viernes, 30 de octubre de 2015

5.9 Fuerzas de fricción Dinámica del movimiento circular.

5.9 Fuerzas de fricción Dinámica del movimiento circular.



Ecuación de la dinámica del movimiento circular
 En el estudio del movimiento circular uniforme hemos visto la velocidad del móvil no cambia de módulo pero cambia constantemente de dirección. El móvil tiene una aceleración que está dirigida hacia el centro de la trayectoria, denominada aceleración normal y cuyo módulo es




La segunda ley de Newton afirma que la resultante de las fuerzas F que actúan sobre un cuerpo que describe un movimiento circular uniforme es igual al producto de la masa m por la aceleración normal an.

F=m an

Vamos a estudiar dos ejemplos de movimiento circular: un vehículo que se mueve por una pista circular sin peralte, y un regulador centrífugo.


Curva sin peralte

En el primer ejemplo, examinamos la conducta de un coche que describe una curva sin peralte.

Una de las principales dificultades que se presenta a la hora de resolver este problema es la de separar el movimiento tangencial (uniforme con velocidad constante) del movimiento radial del vehículo que es el que se trata de estudiar. El applet que presentamos a continuación tratará de ayudar a superar esta dificultad.
Fundamentos físicos

Suponemos que el vehículo circula con velocidad constante, y que actúa sobre el mismo una fuerza de rozamiento en la dirección perpendicular a su vector velocidad.



Las fuerzas que actúan sobre el móvil son tres, el peso, la reacción del plano y la fuerza de rozamiento. Esta última es la que hace que el vehículo describa una trayectoria circular.

Como hay equilibrio en sentido vertical la reacción del plano es igual al peso

N=mg

Aplicando la segunda ley de Newton al movimiento en la dirección radial



Siendo v la velocidad del móvil y R el radio de la circunferencia que describe

A medida que se incrementa la velocidad v, se incrementa la fuerza de rozamiento Fr hasta que alcanza un valor máximo dado por el producto del coeficiente de rozamiento estático por la reacción del plano, m N.

La velocidad máxima v que puede alcanzar el vehículo para que describa una curva circular de radio R es, por tanto



Como podemos apreciar en el programa interactivo, a medida que se aumenta la velocidad del móvil la fuerza de rozamiento crece hasta alcanzar el valor máximo m N, la trayectoria del vehículo es una circunferencia.



Si la velocidad del móvil es superior a la máxima, la fuerza de rozamiento, que es perpendicular al vector velocidad, tiene un valor constante e igual a su valor máximo, la trayectoria del móvil deja de ser circular y ha de calcularse aplicando procedimientos numéricos. Para simplificar el problema hemos supuesto que el coeficiente de rozamiento estático y dinámico tienen el mismo valor.

No hay comentarios.:

Publicar un comentario